Cho tam giác ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài tam giác ABC vẽ các tam giác ABD và ACE vuông cân tại A. Đường thẳng AH cắt DE tại M.
a) Chứng minh: BD^2+CE^2=2.(AB^2+AC^2)=2.BH^2+4.AH^2+2.CH^2
b) Vẽ DP vuông góc AH tại P, EQ vuông góc AH tại Q. Chứng minh AP = BH
c) Chứng minh M là trung điểm của DE
d) Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F. Chứng minh F, A, H thẳng hàng.