Cho tam giác ABC, Đường phân giác BD cắt trung tuyến AM tại I, đường thẳng CI cắt AB tại N. Chứng minh
\(\frac{AB}{AN}+1=\frac{2AM}{AI}\)
Cho tam giác ABC. Từ điểm D trên cạnh BC kẻ các đường thẳng song song với các cạnh AB,AC chúng cắt nhau tại cạnh AC,AB lần lượt tại F và E. Chứng minh \(\frac{AE}{AB}+\frac{AF}{AC}=1\)
Tam giác ABC. Phân giác AD, trung tuyến AM. Qua D kẻ đường thẳng song song với AB cắt AM ở I. BI cắt AC tại E. Chứng minh AB = AE
cho tam giác abc và điểm m tuỳ ý các đoạn thẳng AM,BM,CM cắt các cạnh BC,AC,AB tại D,E,F. CMR
Cho tam giác ABC vuông tại A AB nhỏ hơn AC đường cao AH. Kẻ BE vuông góc trung tuyến AM tại E, BE cắt AH ở D ,cắt AC ở F
\(\frac{AB^2}{AC^2}\)=\(\frac{BH}{CH}\)
Chứng minh D là trung điểm của BF
Cho tam giác ABC, đường thẳng d//BC cắt AB,AC và trung tuyến AM tại E,F,N.Trên tia đối của FB lấy điểm K, KN cắt AB tại P, KM cắt AC tại Q. Chứng minh PQ//BC
Cho tam giác ABC vuông tại A (AB<AC) và đường cao AH. Đường thẳng đi qua trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: \(\frac{1}{AM^2}+\frac{1}{AN^2}\ge\frac{9}{BC^2}\)
Cho tam giác ABC có đường tròn nội tiếp (I) theo thứ tự tiếp xúc với BC, CA, AB tại D, E, F. Đường thẳng DI cắt EF tại N. Chứng minh đường thẳng AN đi qua trung điểm
BC.
a) Cho tam giác ABC, đường cao AH. Trung tuyến BM cắt đường phân giác CD ở K thỏa mãn KB=KC. Đường thẳng vuông góc với KB tại K cắt BC tại E. Tính tỉ số EH/EC theo tỉ số k=AC/BC.
b) Cho tam giác ABC nhọn nội tiếp đường tròn (O) có AH là đường cao. Gọi D là giao điểm của AO với BC. CMR: \(\frac{HB}{HC}+\frac{DB}{DC}>=2\frac{AB}{AC}\)