Chương III - Góc với đường tròn

BA

Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại B và C cắt nhau tại N. Qua A kẻ đg // BC cắt (O) tại M. NM cắt (O) tại K. NO cắt (O) tại I.AK cắt BC tại H. C/m H là trđ BC

AH
8 tháng 3 2021 lúc 21:21

Lời giải:

*** Mình chưa thấy điểm $I$ có vai trò gì trong bài này.

Gọi $D$ là giao điểm $BC, AN$ và $L$ là giao $AN$ với $(O)$

Dễ thấy $\triangle ABN=\triangle MCN$ do:

$AB=MC$ (tính chất cung bị chặn bởi 2 dây song song)

$NB=NC$

$\widehat{ABN}=\frac{1}{2}\text{sđc(AB>)}=\frac{1}{2}\text{sđc(MC>)}=\widehat{MCN}$

Do đó:

$\widehat{BAD}=\widehat{BAN}=\widehat{CMN}=\widehat{CAH}$

$\Rightarrow \widehat{BAH}=\widehat{CAD}$

Ta có:

$\frac{HB}{CH}=\frac{S_{ABH}}{S_{ACH}}=\frac{AB.AH.\sin BAH}{AC.AH.\sin CAH}=\frac{AB.\sin BAH}{AC\sin CAH}$

$=\frac{AB}{AC}.\frac{\sin BAH}{\sin CAH}=\frac{AB}{AC}.\frac{\sin CAD}{\sin BAD}=\frac{AB}{AC}.\frac{\sin CAL}{\sin BAL}=\frac{AB}{AC}.\frac{\sin CBL}{\sin BCL}=\frac{AB}{AC}.\frac{LC}{BL}(*)$

Mà:

Dễ cm $\triangle ABN\sim \triangle BLN, \triangle ACN\sim \triangle CLN$

$\Rightarrow \frac{AB}{BL}=\frac{BN}{LN}=\frac{CN}{LN}=\frac{AC}{CL}$

$\Rightarrow \frac{LC}{BL}=\frac{AC}{AB}(**)$

Từ $(*); (**)\Rightarrow \frac{BH}{HC}=\frac{AB}{AC}.\frac{AC}{AB}=1$

$\Rightarrow BH=HC$ nên $H$ là trung điểm của $BC$

Bình luận (2)
AH
8 tháng 3 2021 lúc 3:02

Hình vẽ:

undefined

Bình luận (1)
AH
8 tháng 3 2021 lúc 3:04

** Đây là bài toán liên quan đến đường đẳng giác, đường đối trung. Bạn có thể google search để hiểu chuyên sâu hơn về tính chất của đường này.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
Z2
Xem chi tiết
BM
Xem chi tiết
PN
Xem chi tiết
DH
Xem chi tiết
CN
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
HT
Xem chi tiết