a) Ta có AP là tia phân giác của \(\widehat{BAC}\)
=> \(\widehat{BAP}=\widehat{PAC}\)
=> \(\stackrel\frown{BP}=\stackrel\frown{PC}\) (2 góc nt bằng nhau chắn 2 cung bằng nhau)=> P nằm chính giữa \(\stackrel\frown{BC}\)
=> BP=PC
Ta có OB = OC = R
=> O thuộc đường trung trực của BC
Lại có BP = PC => P thuộc đường trung trực của BC
=> OP là đường trung trực của BC
=> OP vuông góc với BC (1)
Lại có AH là đường cao từ A của tam giác ABC
=> AH vuông góc với BC (2)
Từ 1 và 2 => OP //AH
b) Ta có OA = OP = R
=> \(\widehat{OAP}=\widehat{OPA}\) (2 góc ở đáy )
Mà \(\widehat{OPA}=\widehat{HAP}\) (do AH//OP)
=> \(\widehat{HAP}=\widehat{OAP}\), mà AP nằm giữa AH và AO
=> AP là tia phân giáccuar góc OAH