Violympic toán 9

TG

Cho tam giác ABC nội tiếp đường tròn (o) đường kính BC . Vẽ dây cung AD của (O) vuông góc với đường kính BC tại H . Gọi M là trung điểm cạnh OC và I là trung điểm cạnh AC . từ M vẽ đường thẳng vuông góc với OC , đường thẳng này cắt tia OI tại N . Trên tia ON lấy điểm S sao cho N là trung điểm cạnh OS
a) c/m tam giác ABC vuông tại A và HA = HD
b) c/m : MN // SC và SC là tiếp tuyến của đường tròn (o)
c) gọi K là trung điểm cạnh HC , vẽ đường tròng đường kính AH cắt cạnh AK tại F . C/m BH . HC = AF . AK
d) Trên tia đối của tia BA lấy điểm E sao cho B là trung điểm cạnh AE . C/m ba điểm E,H,F thẳng hàng

Nguyễn Ngọc Lộc , ?Amanda? , Nguyễn Thành Trương , Trần Thanh Phương

NL
2 tháng 4 2020 lúc 10:57

- Hình bạn tự vẽ nha ( nếu rảnh thì mình sẽ vô vẽ hộ )

a, - Xét ( O ) có : \(A\in\left(O\right)\), BC là đường kính của ( O ) .

=> Tam giác ABC vuông tại A .

\(D\in AH\).

=> \(AH\perp BC\)

- Xét ( O ) có : \(AH\perp BC\), BC là đường kính .

=> BC là trung điểm của AD .

=> AH = HD .

b, - Xét tam giác OSC có : \(\left\{{}\begin{matrix}ON=NS\\OM=MC\end{matrix}\right.\) ( gt )

=> MN là đường trung bình của tam giác OSC .

=> MN // SC .

\(NM\perp OC\) tại M .

=> \(SC\perp BC\)

- Xét ( O ) có : \(\left\{{}\begin{matrix}C\in\left(O\right)\\SC\perp BC\end{matrix}\right.\)

=> SC là tiếp tuyến của ( O ) .

c, - Gọi tâm của đường tròn đường kính AH là X .

- Xét ( X ) có : \(F\in\left(X\right)\), AH là đường kính .

=> Tam giác AFH vuông tại F .

=> \(HF\perp AK\)

- Áp dụng hệ thức lượng vào tam giác AHK vuông tại H, \(HF\perp AK\) .

\(AH^2=AF.AK\)

- Áp dụng hệ thức lượng vào tam giác ABC vuông tại A, \(HA\perp BC\) .

\(AH^2=BH.HC\)

-> \(AF.AK=BH.HC\left(=AH^2\right)\) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LL
Xem chi tiết
ST
Xem chi tiết
HB
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
EO
Xem chi tiết
HT
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết