Ôn thi vào 10

TT

 cho tam giác ABC nội tiếp đường tròn , kẻ đường cao AH của tam giác và đường kính AD của đường tròn . Chứng ,minh rằng \(\widehat{BAH}=\widehat{DAC}\)

NT
7 tháng 4 2021 lúc 13:40

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABH}=\widehat{ADC}\)(1)

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C∈(O))

AD là đường kính(gt)

Do đó: ΔADC vuông tại C(Định lí)

Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)

Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
MQ
Xem chi tiết
GH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết
NK
Xem chi tiết
NY
Xem chi tiết
AQ
Xem chi tiết