Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao
choBD BA . Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng:
a) Điểm H nằm giữa B; D.
Page 15
b) BE là đường trung trực của đoạn AD.
c) Tia AD là tia phân giác của góc HAC.
d) HD DC
Cho tam giác ABC vuông tại A và tia phân giác BD. Kẻ DE vuông góc BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng:
a) AB = BE
b) Tam giác CDF cân
c) AE // CF
Cho tam giác ABC cân tại A trên tia đối của tia BC lấy điểm M trên tia đối của tia BC lấy điểm N sao cho BM=CN
A)chung minh tam giác AMN là tam giác cân
B) kẻ BH vuông góc với AM (H thuộc AM ) CK vuông góc AN (K thuộc AN )chung minh BH bằng CK
C gọi O là giao điểm của BH và CK chung minh tam giac OBC cân
D gọi D là trung điểm của BC chứngminh ADI thẳng hàng
Các bạn vẻ hình và làm giúp minh nhé
Cho góc nhọn xoy trên tia ox lấy điểm A trên tia oy lấy điểm B sao cho OA bằng OB kẻ AH vuông góc với oy H thuộc oy NK vuông góc với ox K thuộc õ
Chứng minh
A AH bằng BK
B gọi I là giao điểm của AH và BK Chứng minh OI là tia phân giác của của góc xoy
Vẻ hinh giúp mình nhé
Bài 2. Tính độ dài hai cạnh của một hình chữ nhật, biết tỉ số giữa các cạnh của nó bằng 0,6 và chu vi = 32cm. Bài 3. Cho hàm số y = f(x) = x2 – 1 . Tìm x sao cho f(x) = 1 . Bài 4. Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. a) Cho biết góc ACB = 400. Tính số đo góc ABD. b) Trên cạnh BC lấy điểm E sao cho BE = BA. Chứng minh ΔBAD = ΔBED và DE ⊥ BC c) Gọi F là giao điểm của BA và ED. Chứng minh rằng: ΔABC = ΔEBF d) Vẽ CK vuông góc với BD tại K. Chứng minh rằng ba điểm K, F, C thẳng hàng
Tam giác ABC có AB=AC gọi MN lần lượt là trung điểm của AB AC M thuộc AB và N thuộc AC
Chứng minh
A tam giác AMC= tamgiác ANB
B góc ACM= góc ABN
Các bạn đừng làm gì liên quan đến tam hiacs cân nhé
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Giúp mik với mik đang cần gấp
Cho tam giác ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC . Hai đoạn thẳng BN và CM cắt nhau tại G .
a) Chứng minh : AM = AN
b) Trên tia đối của tia NB lấy điểm K sao cho NK = NG . Chứng minh : AG song song CK
c) BG = GK
d) Chứng minh AG là đường trung trực MN