Ôn tập cuối năm phần hình học

H24

Cho tam giác ABC nhọn, BD và CE là hai đường cao cắt nhau tại H.

a) Chứng minh rằng: ΔHED đồng dạng ΔHBC

b) Chứng minh rằng: ΔADE đồng dạng ΔABC

c) Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, cắt AB tại I, cắt AC tại K. Chứng minh tam giác IMK là tam giác cân.

NT
8 tháng 7 2021 lúc 11:24

a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)

Xét ΔHED và ΔHBC có 

\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)

\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)

Do đó: ΔHED∼ΔHBC(c-g-c)

b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{EAC}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{EAD}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
AA
Xem chi tiết
YU
Xem chi tiết
LP
Xem chi tiết
DH
Xem chi tiết
BH
Xem chi tiết
NT
Xem chi tiết
HR
Xem chi tiết
PT
Xem chi tiết