Cho tam giác nhọn abc các đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI .
Chứng minh AH^2= 4.IK.IO
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Cho \(\Delta ABC\) có 3 góc nhọn; đường cao AH, BE, CF cắt nhau ở H.
a) C/m \(BH.BE+HC.EC=BC^2\)
b) C/m \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
c) C/m H là giao điểm của các đường phân giác của \(\Delta DEF\)
Cho tam giác ABC vuông tại B, đường cao BH . Cho biết AB cm AC cm 6 , 10 .
a) Tính độ dài các đoạn thẳng BC BH HA HC , , , .
b) Gọi M và N theo thứ tự là hình chiếu của H trên AB và BC. Chứng minh: BN BC BM BA . . .
cho tam giác ABC có 3 góc nhọn, vẽ đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC.
a) CM nếu HG song song BC thì tanB.tanC=3
b) CM: tanA.tanB.tanC=tanA+tanB+tanC
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
1.
Cho ta giác abc vuông tại A, AB=15cm, đường cao AH, BH=9cm
a) tính AC, BC và AH
b) Gọi m là trung điểm của BC. Tính đt tam giác AHM
Cho tam giác vuông tại A , đường cao AH .Gọi M là trung điểm của BC . Biết AB=3cm , AC=4cm . Tính độ dài đường cao AH và diện tích tam giác ABM
cho tam giác ABC nhọn , đường cao AD,BE,EF cắt nhau tại H . CM:\(\dfrac{FE}{BC}=cosBAC\)