Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1, Cho tam giác ABC nhọn có AB,AC, các đường cao AD;BE;CF cắt nhau tại H.
b, Gọi M là điểm đối xứng của H qua D. Giao điểm của EF với AM là N. CMR: HN.AD=AN.DM
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác ABC (AB<AC) nhọn nội tiếp đường tròn tâm O. Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của BE và CF.Đường thẳng đi qua F song song với AC cắt AK , AD lần lượt tại M,N. Chứng minh MF=NF
1. cho tam giác ABC vuông tại A có đường cao AH.Gọi M,N lần lượt là các điểm đối xứng của H qua AB và AC.CMR: đường thẳng mà là tiếp xúc với đường tròn đường kính BC
Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
1.Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). 3 đường cao AD,BE,CF cắt nhau tại H. EF cắt BC tại K. AK cắt (O) tại L.
a/chứng minh HL vuông góc AK
b/M thuộc cung nhỏ BC. N,P đối xứng M qua AB,AC. Chứng minh N,H,P thẳng hàng
Cho tam giác ABC có 3 góc nhọn, AB < AC và 3 đường cao AD,BE,CF cùng đi qua điểm H. Gọi (S) là đường tròn ngoại tiếp tam giác DEF
1, CM đường tròn (S) đi qua trung điểm của đoạn thẳng AH
2, Gọi M,N lần lượt là giao điểm của đường tròn (S) với các đoạn BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt đường thẳng MN tại T. CM đường thẳng HT song song với EF
Cho tam giác ABC, AB<AC có 3 góc nhọn nội tiếp đường tròn (O), gọi I là tâm đường tròn nội tiếp, tia AI cắt (O) tại D, AD cắt BC tại J
a) DI2=DJ.DA
b) Kẻ đường kính DE của (O), đường thẳng AE cắt BI và CI lần lượt tại F và H. C/m E là trung điểm FH.
c) Lấy điểm K thuộc cung nhỏ BC của đường tròn (O), M là điểm đối xứng của I qua K, N là giao điểm của BH và CF. C/m H,F,M,N thuộc 1 đường tròn
Cho tam giác ABC nhọn AB<AC và nội tiếp đường tròn (O) . Kẻ các đường cao AD,BE,CF của tam giác ABC . Gọi H là trực tâm của tam giác ABC . Gọi L là điểm đối xứng với H qua đường thẳng BC . ĐUowngf tròn ngoại tiếp tam giác CDL cắt đường thẳng AC tại M . Đường tròn ngoại tiếp tam giác NDL cắt đường thẳng AB tại N . Gọi K là giao điểm của hai đường thẳng È và BC , P là trung điểm của BC . CMR
a) Tứ giác AEHF . BCEF nội tiếp
b) Diểm L nằm trên đường tròn (O) và È vuông giác OA
c) Ba điểm D.M.N thẳng hàng và KB.KC=KD.KP