Cho tam giác ABC có 3 góc nhọn, AB < AC và 3 đường cao AD,BE,CF cùng đi qua điểm H. Gọi (S) là đường tròn ngoại tiếp tam giác DEF
1, CM đường tròn (S) đi qua trung điểm của đoạn thẳng AH
2, Gọi M,N lần lượt là giao điểm của đường tròn (S) với các đoạn BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt đường thẳng MN tại T. CM đường thẳng HT song song với EF
Cho tam giác ABC nội tiếp đường tròn tâm O, đường phân giác của góc A và góc B cắt nhau tại I , cắt đường tròn tâm O lần lượt tại D và E, gọi E là giao điểm của AC và DE. Chứng minh :
a) DE là đường trung trực của IC
b) IF song song BC
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC
cho tam giác nhọn ABC nội tiếp đường tròn (O). Hai đường phân giác trong của góc A và góc B cắt nhau ở I và thứ tự cắt đường tròn ở D và E. Đường thẳng DE cắt BC và AC lần lượt ở M và N. Chứng minh:
a) tứ giác AENI và BIMD nội tiếp
b) tứ giác CMIN là hình thoi
Giúp e vs ạ
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
( Làm mỗi câu c hộ mình thoi ạ)
Cho tam giác ABC nhọn nội tiếp đường tròn (O) đường kính AD. Tiếp tuyến tại D cắt đường thẳng BC tại P, đường thẳng PO cắt đường thẳng AC tại M và cắt đường thẳng AB tại N. Gọi I là trung điểm của đoạn thẳng BC. Qua C vẽ đường thẳng song song với đường thẳng MN cắt đường thẳng AD tại E và cắt đường thẳng AB tại Q. Chứng minh rằng: a) Bốn điểm P, O, I, D cùng nằm trên một đường tròn. b) EIP = EDC . c) O là trung điểm của đoạn thẳng MN