Cho tam giác ABC, hai điểm M,N thỏa: \(\overrightarrow{BC}+\overrightarrow{MA}=\overrightarrow{0}\); \(\overrightarrow{AB}-\overrightarrow{NA}-3\overrightarrow{AC}=\overrightarrow{0}\)
CMR: MN//AC
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
1.Cho △ABC. Gọi M;N lần lượt là trung điểm AB và BC. Đặt\(\overrightarrow{CM}=\overrightarrow{a};\overrightarrow{AN}=\overrightarrow{b}\).Biểu diễn các véc tơ \(\overrightarrow{AB};\overrightarrow{BC};\overrightarrow{CA}\) theo \(\overrightarrow{a};\overrightarrow{b}\)
2.Cho △ABC.Trên đường thẳng AB lấy điểm M sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\).Hãy phân tích véc tơ \(\overrightarrow{CM}\)theo hai véc tơ \(\overrightarrow{u}=\overrightarrow{CA};\overrightarrow{v}=\overrightarrow{CB}\)
3. Cho △ABC. Gọi M;N;P lần lượt trên cách cạnh AB;BC;CA của △ABC sao cho MB =2MA;NC=2NB;PA=2PC.CMR : \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
cho tam giác ABC , lấy M,N,P lần lượt trên các đoạn AB,BC,AC sao cho AM= \(\frac{1}{3}\)AB, BN= \(\frac{1}{3}\) BC, CP= \(\frac{1}{3}\)CA. CMR: \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=0\)
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
Cho tam giác ABC, gọi M, N là trung điểm của AB, AC, biểu diễn \(\overrightarrow{MN}=m\overrightarrow{CM}+n\overrightarrow{BN}\). Khi đó m = ....
cho tam giác có trọng tâm G, H đối xứng B qua G, CMR
a, \(\overrightarrow{AB}-12\overrightarrow{AC}+3\overrightarrow{MC}\) \(=\)\(\overrightarrow{0}\)
b, \(5\overrightarrow{AB}-\overrightarrow{AC}+6\overrightarrow{MH}=\overrightarrow{0}\)
Bài 1: Cho tam giác ABC; M là trung điểm AB; N thuộc AC sao cho NC = 2NA. Xác định K, D sao cho:
a. 3\(\overrightarrow{AB}\) + 2\(\overrightarrow{AC}\) - 12 \(\overrightarrow{AK}\) = \(\overrightarrow{0}\)
b. \(3\)\(\overrightarrow{AB}+4\overrightarrow{AC}-12\overrightarrow{KD}=\overrightarrow{0}\)
Bài 2: Cho tứ giác ABCD. Xác định G sao cho: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
Chứng minh G là duy nhất
Cho 4 điểm A,B,C,D. Gọi E,F,G lần lượt là trung điểm của AB,CD,EF. Chứng minh
a,\(\overrightarrow{AC}+\overrightarrow{BD}=2\overrightarrow{EF}\)
b,\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC+}\overrightarrow{AD}=4\overrightarrow{AG}\)
MÌNH CẦN GẤP GIÚP MÌNH NHA