Ôn tập cuối năm môn Hình học

GD

cho tam giác ABC, M là trung điểm của AB, D là trung điểm của BC. Điểm N thuộc AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\). K là trung điểm của MN. Phân tích \(\overrightarrow{AK}\)\(\overrightarrow{KD}\) theo hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{AC}\)

BV
10 tháng 11 2017 lúc 9:01

A B C M N K D
Do K là trung điểm của MN nên \(\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\).
\(\overrightarrow{AD}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\).
\(\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{AD}=\)\(-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\).

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
PO
Xem chi tiết
NL
Xem chi tiết
BP
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết