Cho ΔABC . Tìm tập hợp điểm M thõa mãn \(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho ΔABC trọng tâm G , gọi I là trung điểm BC . Tìm M là điểm thõa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
ChoΔABC tìm điểm M thõa mãn \(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BA}+\overrightarrow{CB}\right|\)
Oxy , A(1;2) ; B(2;5) , đường d x-2y-2=0.Tìm tọa độ M\(\in\)d sao cho
a)\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất
b)\(MA^2+MB^2\) đạt giá trị nhỏ nhất
Cho hình bình hành ABCD . Tìm quỹ tích điểm M thõa mãn \(\left|\overrightarrow{MA}-\overrightarrow{BM}\right|=\left|\overrightarrow{MC}-\overrightarrow{DM}\right|\)
Oxy , A(1;2) ; B(2;5) , đường d x-2y-2=0.Tìm tọa độ M\(∈\)d sao cho
a) \(\left|\overrightarrow{MA}+3\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất
b) Giá trị tuyệt đối của MA-MB đạt giá trị lớn nhất
cho tam giác ABC vuông tại A và B = 30o .Tính các giá trị của biểu thức sau:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
B) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{BA}\right)+\cos\overrightarrow{CA},\overrightarrow{BA}\)
gọi M là mộ t điểm bất kỳ nằm trong tam giác, Sa , Sb , Sc lần lượt là diện tích tam giác MBC, MCA, MAB. Chứng mnh rằng \(S_a\overrightarrow{MA}+S_b\overrightarrow{MB}+S_c\overrightarrow{MC}=\overrightarrow{0}\)
cho \(\Delta ABC\). Tổng \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\left(\overrightarrow{BC},\overrightarrow{CA}\right)+\left(\overrightarrow{CA},\overrightarrow{AB}\right)\) có thể chấp nhận giá trị nào trong các giá trị sau : \(90^o;180^o;270^o;360^o\) ?