Cho ΔABC vuông tại B (AB<AC), đường cao BH.
a) Cm: ΔABC∼ΔAHB và AB2 = AH.AC
b)Vẽ AD là tia phân giác trong \(\widehat{BAC}\) (D thuộc BC) cắt BH tại M
Cm: \(\dfrac{AM}{AD}=\dfrac{DB}{DC}\)
c) Kẻ CI vuông góc với AD tại I. Chứng minh: AD2 = AB.AC-BD.CD
Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
Câu 1: Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D, tia phân giác của góc AMC cắt cạnh AC ở E.
a. Chứng minh DE // BC.
b. Gọi G là giao điểm của AM với DE. Chứng minh G là trung điểm của DE. Tìm điều kiện của tam giác ABC để G là trung điểm của AM.
c. Gọi AN là phân giác của BAC, (N thuộc BC). Biết AB = 12cm, AC = 16cm, BC = 20cm. Tính diện tích tam giác AMN.
Giúp mình đi cầu xin mấy bạn đó
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH.
a, Chứng minh tam giác BHA ~ tam giác BAC. Từ đó suy ra BA2 = BH.BC
b, Lấy I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng: CH.CB = CI.CK
c, Tia BK cắt HA tại D. Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh rằng góc BMD = 90o
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Cho tam giác ABC vuông tại A có AB=15cm, AC=20cm. Vẽ \(AH\perp BC\) tại H.
a) Tính BC, AH
b) Vẽ BD là phân giác của \(\widehat{ABC}\left(D\in AC\right)\) Tính DC
c) Gọi I là giao điểm của AH và BD. Chứng minh AI.AD = IH.DC
d) Trên cạnh HC lấy E sao cho HE=HA, qua E vẽ đường thẳng \(\perp BC\) cắt AC ở M, qua C vẽ đường thẳng \(\perp BC\) cắt tia phân giác của \(\widehat{MEC}\) tại F. Chứng minh H,M,F thẳng hàng
ho tam giác abc vuông tại A có AB <AC .trên cạnh AC lấy D sao cho AD=AB. kẻ CE vuông góc với BD (E thuộc BD) a) chứng minh 2 góc EAC và EBC bằng nha b)kéo dài AB và CE cắt nhau tại F. CHứng minh diện tích tam giác FAE = diện tích tam giác ABCE