cho △ABC vẽ AH ⊥ BC(H\(\in\)BC) gọi D, E, F lần lượt là điểm nằm giữa A và H, nằm giữa B và H, nằm giữa C và H
CMR: chu vi △DEF<chu vi △ABC
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng D sao cho BvàC cùng thuộc nửa mặt phẳng bờ là đường thẳng D. gọi I là trung điểm của BC. gọi H,M,K lần lượt là hình chiếu của B,I,C lên đường thẳng C
a, C/m tam giác BHA=tam giác AKC
b,C/m tam giác HIA=tam giác KIC
c, Đường thẳng D ở vị trí nào để diện tích tứ giác BCKH lớn nhất
5>Cho tam giác ABC, điểm P nằm giữa A và C Gọi E,F là chân đường vuông góc từ A và C đến BD.CM AC>AE+CE
6>Cho tam giác ABC nhọn, vẽ AD vuông BC, BE vuông AC CM AD+BE
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng