Chương I: VÉC TƠ

KR

Cho tam giác ABC. Gọi I nằm trên cạnh BC sao cho 2CI=3BI và J nằm trên tia đối của BC sao cho 5JB=2JC. Tính vecto AI và AJ theo \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AC}\)

NL
31 tháng 10 2020 lúc 21:57

\(3\overrightarrow{BI}=2\overrightarrow{IC}\Rightarrow3\overrightarrow{BI}=2\overrightarrow{IB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{BI}=\frac{2}{5}\overrightarrow{BC}\)

\(5\overrightarrow{JB}=2\overrightarrow{JC}\Leftrightarrow5\overrightarrow{JB}=2\overrightarrow{JB}+2\overrightarrow{BC}\Rightarrow\overrightarrow{JB}=\frac{2}{3}\overrightarrow{BC}\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}=\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}=\overrightarrow{AB}-\frac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LY
Xem chi tiết
CT
Xem chi tiết
TN
Xem chi tiết
XH
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết