Chương I: VÉC TƠ

VH

Cho tam giác ABC. Gọi D, E lần lượt là các \(\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC};\overrightarrow{AE}=\frac{3}{4}\overrightarrow{AC}\). Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thẳng hàng.

NL
28 tháng 3 2019 lúc 13:07

A B C D E K

Bài này có 1 cách cực kì nhanh, ko cần phân tích vecto, đó là sử dụng Menelaus của lớp 8:

Nếu B, K, E thẳng hàng, xét tam giác ACD có BE lần lượt cắt 3 cạnh tam giác tại E, K, B nên theo Menelaus ta có:

\(\frac{EA}{EC}.\frac{BC}{BD}.\frac{DK}{KA}=1\Leftrightarrow\frac{3}{1}.\frac{3}{1}.\frac{DK}{KA}=1\Rightarrow AK=9DK\Rightarrow AK=\frac{9}{10}AD\)

Vậy điểm K nằm ở vị trí sao cho \(\overrightarrow{AK}=\frac{9}{10}\overrightarrow{AD}\) thì B, K, E thẳng hàng

Bình luận (1)

Các câu hỏi tương tự
HT
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
TY
Xem chi tiết
LT
Xem chi tiết
ON
Xem chi tiết
TT
Xem chi tiết