Violympic toán 8

LT

Cho tam giác ABC, đường trung tuyến AM. Qua điểm D nằm trên cạnh BC, vẽ đường thẳng song song với AM cắt AB, AC lần lượt tại E, F.

a. CMR: DE + DF = 2AM.

b. Đường thẳng qua A song song với BC cắt EF tại N. CMR: N là trung điểm của EF.

BT
4 tháng 3 2019 lúc 13:26

a) Ta có:
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès)
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès)
=> DE / AM + DF / AM = BD / BM + CD / CM
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2)
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2)
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2
<=> DE + DF = 2AM (điều phải chứng minh)

b)
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt)
=> Tứ giác ANDM là hình bình hành => AN = DM

- Ta có: AN // BD (gt)
=> AN / BD = NE / DE (Định lí Thalès)
<=> NE = (DE . AN) / BD
- Ta có: DE + DF = 2AM (cm câu a)
<=> DE + (DE + NE + NF) = 2AM
<=> 2DE + EF = 2AM
<=> EF = 2AM - 2DE = 2(AM - DE)
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD]
(do DE/ AM = BD / BM => AM = (DE . BM) / BD )
<=> EF = 2. [DE . (BM - BD) / BD]
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM)
<=> EF = 2NE
<=> NE = EF / 2
Vậy N là trung điểm của EF

Bình luận (0)

Các câu hỏi tương tự
LS
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
BB
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết