Ôn tập cuối năm phần số học

VQ

Cho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác ABD đồng dạng với tam giác CBF.
b) Chứng minh: AH.HD=CH.HF.
c) Chứng minh: tam giác BDF đồng dạng với tam giác ABC.
d) Gọi K là giao điể DE và CF. Chứng minh: HF.CK=HK.CF.

HP
21 tháng 4 2017 lúc 15:54

Ban tu ve hinh, minh chi giai cau d)

Ta co : AH.HD=CH.HF ( cmt ) ==> HF/AH=HD/HC

Xét tg FHD va tg AHC co :

goc FHD = AHC ( đđ ) va HF/AH = HD/HC ( cmt )

==> tg FHD ~ AHC ( c-g-c )

==> goc FDH = ACH

Xét tg ADC vuong tai D va

tg AEH vuong tai E co :

goc A chung

==> tg ADC ~ AEH ( g-g )

==> AD/AE = AC/AH ==> AD/AC = AE/AH

Xét tg ADE va tg ACH co :

goc A chung va AD/AC = AE/AH ( cmt )

==> tg ADE ~ ACH ( c-g-c )

==> goc ADE = ACH hay goc HDE = ACH

Ta co : goc HDE = ACH ( cmt ) va goc FDH = ACH ( cmt )

==> goc HDE = FDH hay DH la tia p/g goc FDE

Xét tg FDK co : DH la tia p/g goc FDE ( cmt )

==> HF/HK = FD/KD ( t/c tic p/g ) (1)

Ta co : HD la tia p/g goc FDE va HD⊥DC ( AD⊥DC, H ∈ AD )

==> DC la tia p/g ngoai goc FDE

Xét tg FDE co : DC

Bình luận (0)
HP
21 tháng 4 2017 lúc 15:58

tiep tuc :

Xét tg FDE co : DC la tia p/g ngoai goc FDE

==> CF/CK = FD/DK ( t/c tia p/g ) (2)

Tu (1) va (2) ==> HF/HK = CF/CK ==> HF.CK = HK.CF

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
HT
Xem chi tiết
BV
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QS
Xem chi tiết
TL
Xem chi tiết