Bài 6: Tính chất ba đường phân giác của tam giác

SK

Cho tam giác ABC  có \(\widehat{A}=70^0\), các đường phân giác BD, CE cắt nhau ở I. Tính \(\widehat{BIC}\) ?

HN
28 tháng 5 2017 lúc 9:33

A B C D I E 1 2 2 1 70 o

\(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí)

\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-70^o\)

\(\Rightarrow\) \(\widehat{B}+\widehat{C}=110^o\).

Do \(\widehat{B_1}=\widehat{B_2},\widehat{C_1}=\widehat{C_2}\) nên \(\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{110^o}{2}=55^o\)

Vậy: \(\widehat{BIC}=180^o-\left(\widehat{B_1}+\widehat{C_1}\right)=180^o-55^o=125^o.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
KT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
KP
Xem chi tiết