a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: góc B>góc C
=>AB<AC
=>HB<HC
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: góc B>góc C
=>AB<AC
=>HB<HC
cho tam giác ABC vuông tại A và có B>C.Gọi H là hình chiếu của A trên đường thẳng BC.
a)chứng minh HB<HC.
b)Trên HC lấy điểm D sao cho HD=HB GỌI E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD.chứng minh DE=DK
cho tam giác ABC có C < B. Gọi H là hình chiều của A trên đường thẳng BC. Trên tia BH lấy điểm D sao cho HB = HD. Gọi E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng:
a)D nằm trên HC
b)DE=DK
cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng D sao cho BvàC cùng thuộc nửa mặt phẳng bờ là đường thẳng D. gọi I là trung điểm của BC. gọi H,M,K lần lượt là hình chiếu của B,I,C lên đường thẳng C
a, C/m tam giác BHA=tam giác AKC
b,C/m tam giác HIA=tam giác KIC
c, Đường thẳng D ở vị trí nào để diện tích tứ giác BCKH lớn nhất
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác ABC có góc B và C là góc nhọn. gọi D là điểm bất kì trên cạnh BC, gọi H và K lần luợt là chân các đường vuông góc kẻ tuừ B và C đến đường thẳng AD. so sánh a) BH và BD. khi nào BH=BD b) HC và BK khi BD<BC/2
mọi ng ơi giúp mình vs mai mình ktr r
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.
Bài 1: Cho tam giác ABC có góc C > góc B. Kẻ AH ⊥ BC tại H. So sánh HB và HC
Bài 2: Cho tam giác nhọn MNK, MN < MK. Từ M kẻ MH ⊥ NK (H thuộc NK). Trên tia HK lấy điểm E sao cho NH=HE. Từ N kẻ NA ⊥ MK (A thuộc MK). Trên tia MA lấy điểm P sao cho MN=NP. Chứng minh rằng:
a) MN=ME
b) MA=AP
Bài 3: Cho tam giác ABC, có AB > AC. Từ A hạ AH ⊥ BC. Trên đoạn thẳng AH lấy điểm M (M không trùng A, H). Chứng minh rằng:
a) MB > MC
b) BA > BM
Bài 4: Cho đường thẳng a và điểm A nằm ngoài đường thẳng a. Gọi H là hình chiếu của điểm A xuống đường thẳng a. Trên đường thẳng a lấy hai điểm B và C. Tính độ dài các đường xiên AB, AC biết AH=6cm, HB=8cm và HC=10cm.
Bài 5: Cho tam giác ABC vuông tại A. Gọi H là hình chiếu của A trên BC. Biết góc BAH < góc CAH. Chứng minh rằng: HB < HC.