Chương I - Hệ thức lượng trong tam giác vuông

H24

Cho tam giác ABC có góc C bằng 45 độ, AB. AC=32\(\sqrt{6}\), AB:AC=\(\sqrt{6}\):3. Tính BC, góc B và diện tích tam giác ABC

NL
23 tháng 8 2021 lúc 16:15

\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)

\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)

\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)

\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)

Kẻ đường cao AD ứng với BC

Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D

\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)

Pitago tam giác vuông ABD:

\(BD=\sqrt{AB^2-AD^2}=4\)

\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)

\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)

Bình luận (0)
NL
23 tháng 8 2021 lúc 16:15

undefined

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AQ
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NK
Xem chi tiết
VK
Xem chi tiết
AN
Xem chi tiết