Bài 9: Tính chất ba đường cao của tam giác

SK

Cho tam giác ABC có góc B và góc C là các góc nhọn, AC > AB. Kẻ đường cao AH. 

Chứng minh rằng :

                 \(\widehat{HAB}< \widehat{HAC}\)

TP
14 tháng 4 2018 lúc 21:57

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC ta có ∠AC > ∠AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
7T
Xem chi tiết
HC
Xem chi tiết
SK
Xem chi tiết
LM
Xem chi tiết
LM
Xem chi tiết