a) Xét tam giác AEF và tam giác BEF, có:
AE = BE (Tính chất đường trung trực)
góc AEF = góc BEF = 90o (Tính chất đường trung trực)
EF : cạnh chung
Vậy tam giác AEF = tam giác BEF (c. g. c)
=> AF = BF (2 cạnh tương ứng)
b) Ta có: EF _|_ AE (gt)
AH _|_ AE (gt)
=> EF // AH (Quan hệ từ _|_ -> //) (1)
Lại có: góc AEF = 90o
Mà góc AEF = góc HFE ( Vì 2 góc này ở vị trí trong cùng phía)
Nên: góc HFE = 90o
Hay: FH _|_ EF (đpcm)
c) Ta có: AE _|_ AH (gt)
FH _|_ AH (gt)
=> AE // FH (Quan hệ từ _|_ -> //) (2)
Từ (1), (2) => FH = AE (Quan hệ hai đầu chắn)
d) Ta có: FH = AE (chứng minh câu c)
Mà: BE = AE ( Tính chất đường trung trực)
Nên: FH = BE
Xét tam giác BEF và tam giác HFE, có:
BE = FH (cmt)
góc BEF = góc HFE = 90o
EF: cạnh chung
=> Tam giác BEF = tam giác HFE (c. g. c)
Do đó: BF = HE (2 cạnh tương ứng) (3)
Mk chỉ co thể làm đến đây thôi, các phần còn lại bạn tự làm nhé!