a) Ta có: Đường trung trực của AB cắt BC tại F(gt)
⇒F nằm trên đường trung trực của AB
⇒FA=FB(tính chất đường trung trực của một đoạn thẳng)
b) Ta có: Đường trung trực của AB cắt BC tại F và AB tại E(gt)
⇔FE là đường trung trực của AB
⇔FE⊥AB
Ta có: HF⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HF//AB(định lí 1 từ vuông góc tới song song)
Ta có: HF//AB(cmt)
FE⊥AB(cmt)
Do đó: HF⊥EF(định lí 2 từ vuông góc tới song song)
c) Xét tứ giác AHFE có
\(\widehat{AHF}=90^0\)(FH⊥AC)
\(\widehat{HAE}=90^0\)(ΔABC vuông tại A)
\(\widehat{FEA}=90^0\)(FE⊥AB)
Do đó: AHFE là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
⇒FH=AE(hai cạnh đối trong hình chữ nhật AHFE)