Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

NN

Cho tam giác ABC có CA=CB=10cm, AB=12cm. Kẻ CI vuông góc với AB(I∈AB). Kẻ IH vuông góc với AC(H∈AC), IK vuông góc với BC(K∈BC).

a, IA=IB

b, IH=IK

C, IC=?

NT
23 tháng 2 2021 lúc 22:06

a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có 

CA=CB(ΔABC cân tại C)

CI chung

Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)

Suy ra: IA=IB(hai cạnh tương ứng)

b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có 

IA=IB(cmt)

\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)

Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)

Suy ra: IH=IK(hai cạnh tương ứng)

c) Ta có: IA=IB(cmt)

mà IA+IB=AB(I nằm giữa A và B)

nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:

\(CA^2=CI^2+AI^2\)

\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)

hay CI=8(cm)

Vậy: IC=8cm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VD
Xem chi tiết
KT
Xem chi tiết
TV
Xem chi tiết
K2
Xem chi tiết
AM
Xem chi tiết
LY
Xem chi tiết
NN
Xem chi tiết
HK
Xem chi tiết