a) Xét \(\Delta ABC,\Delta ADE\) có :
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) (đối đỉnh)
\(AC=AE\left(gt\right)\)
=> \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)
=> DE = BC (2 cạnh tương ứng)
b)Từ \(\Delta ABC=\Delta ADE\left(c.g.c\right)\)
Suy ra : \(\widehat{EDA}=\widehat{CBA}\) (2 góc tương ứng)
Mà thấy : 2 góc này ở vị trí so le trong
Nên : DE // BC (đpcm)
c) Xét \(\Delta AEH,\Delta AFH\) có :
\(EH=FH\left(gt\right)\)
\(\widehat{AHE}=\widehat{AHF}\left(=90^{^O}\right)\)
\(AH:Chung\)
=> \(\Delta AEH=\Delta AFH\left(c.g.c\right)\)
=> \(AE=AF\) (2 cạnh tương ứng) (1)
Mà theo giả thiết có : \(AE=AC\) (2)
Từ (1) và (2) => \(AF=AC\left(=AE\right)\)
=> đpcm