Cho tam giác ABC có AB = AC , góc B = góc C . Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB . Hai đoạn thẳng BD và CE cắt nhau tại I .
a) Chứng minh rằng tam giác BDC = tam giác CEB
b) So sánh góc IBE và góc ICD
c) Đường thẳng AI cắt BC tại trung điểm H . Chứng minh rằng AI vuông góc với BC
cho tam giác ABC vuông tại C ; góc A = 60 độ tia phân giác góc BAC cắt BC tại E . Kẻ EK vuông góc với AB . Kẻ BD vuông góc với AE. Chứng minh rằng :
a) AC = AK; AE vuông góc với CK
b) KA=KB
c) EB > AC
d) 3 đường thẳng Ac;BD;AE đồng quy
Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB
Câu C mình thấy nhiều người là tma giác ABK cân tại B là sai nhé -_- ABK là ba điểm nhé -_- Giải giùm mình đi ; ;
Cho tam giác ABC ( AB<AC ), Ax là tia phân giác trong của góc A, D là trung điểm của BC. Qua D kẻ đường thẳng vuông góc với Ax, cắt đường thẳng AB và AC lần lượt tại M và N.
a) Chứng minh góc AMN = góc ANM
b) Chứng minh BM = CN
c) Biết AB = 5cm; AC= 7cm. Tính BM?
Cho tam giác ABC vuông tại C có góc A = 60 độ . Tia phân giác của góc BAC cắt BC ở E . Kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với tia AE ( D thuộc tia AE ) . Chứng minh :
a) AC = AK
b) AE là đường trung trực của đoạn thẳng CK
c ) KA = KB
d ) AC < EB
Các cậu vẽ hình rồi giải nhé Không vẽ cũng được ~ Không sao
Cho tam giác ABC vuông tại A , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
cho tam giác ABC. tia phân giác góc ngoài tại đỉnh B , C cắt nhau tại O.từ A kẻ đường thẳng vuông góc với các đường phân giác trên, cắt đường thẳng BC lần lượt tại M,N. Chứng minh AB+AC+BC=MN
Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.
kẻ EH vuông góc với BC tại H (H thuộc BC ). chứng minh :
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH
c) EC > AE
Cho tam giác ABC , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC