Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác ABC có AB<AC và D là trung điểm AC. Trên tia đối của tia DB lấy điểm E sao cho DE=DB
a, Chứng minh tam giác ADE = tam giác CDB và AE//BC
b, Từ E kẻ Ex vuông góc với AC tại M. Trên tia Ex lấy điểm N sao cho M là trung điểm EN. Chứng min DN=BD
c, Chứng minh BN vuông góc Ex
Cho tam giác ABC vuông tại a đường cao AH .trên tia BC lấy D sao cho BD = BA .đường vuông góc với BC tại D cắt AC tại E , cắt ba tại F. Chứng minh: a) tam giác ABE = tâm giác DBE b) BE là đường trung trực của đoạn AD c) HD < DC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho tam giác ABC vuông tại A, BE là đường trung tuyến (E thuộc AC) Trên tia đối của tia EB lấy điểm F sao cho EF=EB. Chứng minh rằng a)tam giác ABE= tam giác CFE b)BC>CF c) Góc EBA>góc CBE
Bài 5: (3đ) Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC (H thuộc BC). a) Chứng minh ABH = ACH . b) Kẻ HM AB M AB ⊥ ( ) , kẻ HN AC N AC ⊥ ( ) . Chứng minh: MN // BC c) Trên tia đối của tia AB lấy E sao cho AB = AE, kẻ AD vuông góc với EC. Chứng minh AD vuông AH
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng
Cho tam giác ABC có góc ACB=40 độ, đường cao AH. Tia phân giác của góc HAC cắt BC tại D. Kẻ Dk vuông góc với AC(k thuộc AC).
a, CM: tam giác AHD= tam giác AKD.
b, CM: AD vuông góc với HK.
c, Qua điểm C kẻ đường vuông góc với tia AD tai E. Chứng minh rằng các đường AH, KD, CE đồng qui.
d, CM: KC<KA.