Chương II : Tam giác

VT

Cho tam giác ABC có AB < AC, tia phân giác của góc A cắt cạnh BC tại I. Trên cạnh AC lấy điểm D sao cho AD = AB

a) Chứng minh rằng BI = ID

b) Tia DI cắt tia AB tại E. Chứng minh rằng ∆IBE = ∆IDC

c) Chứng minh BD // EC

d) Cho góc ABC = góc ACD. Chứng minh AB + BI = AC



US
29 tháng 12 2017 lúc 16:08

a) Xét \(\Delta ABI\)\(\Delta ADI\) có:

AB = AD (gt)

\(\widehat{BAI}=\widehat{DAI}\)

AI là cạnh chung

Suy ra: \(\Delta ABI\) = \(\Delta ADI\)(c - g - c)

=> BI = ID

b) Ta có: \(\widehat{BEI}=\widehat{DIC}\) (đđ); \(\widehat{AIB}=\widehat{AID}\left(\Delta ABI=\Delta ADI\right)\)

=> \(\widehat{BEI}+\widehat{AIB}=\widehat{DIC}+\widehat{AID}\Rightarrow\widehat{EIA}=\widehat{CIA}\)

Xét \(\Delta AIE\)\(\Delta AIC\) có:

\(\widehat{BAI}=\widehat{CAI}\) ( AI là tia phân giác của \(\widehat{A}\))

AI là cạnh chung

\(\widehat{EIA}=\widehat{CIA}\) (cmt)

Suy ra: \(\Delta AIE\) = \(\Delta AIC\)(g - c - g)

=> EI = IC(2 cạnh tương ứng)

\(\widehat{BEI}=\widehat{ICD}\) (2 góc tương ứng)

Xét \(\Delta IBE\)\(\Delta IDE\) có:

\(\widehat{BIE}=\widehat{DIC}\) (đđ)

EI = IC

\(\widehat{BEI}=\widehat{ICD}\)(cmt)

Suy ra: \(\Delta IBE\)\(\Delta IDE\) (g - c - g)

Bình luận (1)
ND
29 tháng 12 2017 lúc 17:11

c.

\(\Delta IBE=\Delta IDC\left(cmt\right)\\ \Rightarrow BE=DC\\ \Rightarrow BE+AB=DC+AC\\ \Rightarrow AE=AC\)

=> Tam giác AEC cân tại A

\(\Rightarrow\widehat{AEC}=\dfrac{180^0-\widehat{BAC}}{2}\)

TT :

\(\widehat{ABD}=\dfrac{180^0-\widehat{BAC}}{2}\\ \Rightarrow\widehat{ABD}=\widehat{AEC}\)

=> BD // EC

Bình luận (3)
H24
23 tháng 8 2023 lúc 11:18

ko bít

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TV
Xem chi tiết
N7
Xem chi tiết
AM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
LT
Xem chi tiết
NK
Xem chi tiết