Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

VL

Cho tam giác ABC có AB = AC, góc BAC=90 độ. Biết rằng M(1;-1) là trung điểm của cạnh BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác.

Hãy tìm tọa độ các đỉnh tam giác ABC ?

NN
31 tháng 3 2016 lúc 21:36

A B C M G

Vì M(1;-1) là trung điểm BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác ABC nên \(\overrightarrow{MA}=3\overrightarrow{MG}\) từ đó tìm được A(0;2)

Vì tam giác ABC cân tại A nên \(BC\perp MA\) tức là đường thẳng BC đi qua M(1;-1), nhận \(\overrightarrow{MA}=\left(-1;3\right)\) làm vec tơ pháp tuyến.

Do đó đường thẳng BC có phương trình  \(-1\left(x-1\right)+3\left(y+1\right)=0\)

                                                           hay  \(-x+3y+4=0\)

Do tam giác ABC vuông tại A nên MB=MC=MA=\(\sqrt{10}\)

Suy ra B, C nằm trên đường tròn \(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Từ đó tọa độ B, C là nghiệm của hệ phương trình 

\(\begin{cases}-x+3y+4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình thu được (x;y) = (4;0) và (x;y) = (-2;2)

Vậy A(0;2), B(4; 0), C(-2;-2)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
ML
Xem chi tiết
MT
Xem chi tiết
LH
Xem chi tiết
MT
Xem chi tiết
VH
Xem chi tiết