$1. Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lí côsin và định lí sin trong tam giác

QL

Cho tam giác ABC có AB = 5, AC = 6, BC =7. Tính cosA.

HM
23 tháng 9 2023 lúc 23:53

Áp dụng định lí cosin trong tam giác ABC ta có:

\({a^2} = {b^2} + {c^2} - 2bc.\cos A\)\( \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Mà \(AB = c = 5,{\rm{ }}AC = b = 6,{\rm{ }}BC = a = 7\).

\( \Rightarrow \cos A = \frac{{{6^2} + {5^2} - {7^2}}}{{2.5.6}} = \frac{1}{5}\)

Chú ý

Từ định lí cosin, ta suy cách tìm góc khi biết độ dài 3 cạnh

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\;\cos C = \frac{{{b^2} + {a^2} - {c^2}}}{{2ab}}.\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết