$1. Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lí côsin và định lí sin trong tam giác

QL

Trên nửa đường tròn đơn vị ta có dây cung MN song song với trục Ox và \(\widehat {xOM} = \alpha \).

a) Chứng minh \(\widehat {xON} = {180^o} - \alpha \)

b) Biểu diễn giá trị lượng giác của góc \({180^o} - \alpha \) theo giá trị lượng giác của góc \(\alpha \).

HM
23 tháng 9 2023 lúc 23:53

 

a) Do MN song song với Ox nên \(\alpha  = \widehat {OMN} = \widehat {ONM} = \widehat {NOx'}\)

Mà \(\widehat {xON} = {180^o} - \widehat {NOx'} = {180^o} - \alpha \)

\( \Rightarrow \widehat {xON} = {180^o} - \alpha \)

b) Dễ thấy: Điểm N đối xứng với M qua trục Oy

\( \Rightarrow N( - {x_0};{y_0})\)

Lại có: điểm N biểu diễn góc \({180^o} - \alpha \)

 \( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = {y_N} = {y_0}\\\cos ({180^o} - \alpha ) = {x_N} =  - {x_0}\end{array} \right.\);

Mà: \(\sin \alpha  = {y_0};\;\cos \alpha  = {x_0}\)

\( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = \sin \alpha \;\\\cos ({180^o} - \alpha ) =  - \cos \alpha \end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\tan ({180^o} - \alpha ) =  - \tan \alpha \;\\\cot ({180^o} - \alpha ) =  - \cot \alpha \end{array} \right.\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết