Chương II - Đường tròn

TT

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm (O;R). Vẽ hai đường cao BD và CE của tam giác ABC cắt nhau tại H. DE cắt đường tròn (O) tại P và Q (P thuộc cung nhỏ AB).
a) C/m tứ giác BEDC nội tiếp, xác định tâm
b) C/m BH.DH = EH.HC
c) C/m tam giác APQ cân tại A và AP2 = AE.AB
d) Gọi S1 là diện tích tam giác APQ, S2 là diện tích tam giác ABC. Giả sử: \(\dfrac{S_1}{S_2}=\dfrac{PQ}{2BC}\). Tính BC theo R

H24
10 tháng 8 2017 lúc 21:50

A B C D E P Q H O K M N

d) Gọi OA cắt ED ở K.Dễ dàng chứng minh \(AK\perp ED\)( đã cm trong các câu trên ). Kẻ AH cắt BC ở M

\(\dfrac{S_{APQ}}{S_{ABC}}=\dfrac{AK.PQ}{AM.BC}=\dfrac{PQ}{2BC}\Rightarrow AM=2AK\)

\(\Delta AED\)~\(\Delta ACB\)(c.g.c),AK,AM là 2 đường cao tương ứng

\(\Rightarrow\dfrac{C_{AED}}{S_{ABC}}=\dfrac{AE}{AC}=\dfrac{AD}{AB}=\dfrac{ED}{BC}=\dfrac{1}{2}\)

Để ý rằng \(\Delta ABD\) vuông ở D có AB=2AD \(\Rightarrow\widehat{BAC}=60^o\)và dễ thấy tam giác ABC phải cân ---> tam giác ABC đều .

Kẻ \(ON\perp BC\) ,ta tính được \(BC=\sqrt{3}R\)

Bình luận (2)

Các câu hỏi tương tự
HQ
Xem chi tiết
PV
Xem chi tiết
TB
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết