Violympic toán 8

BB

Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC

a) Chứng minh: H, M, K thẳng hàng

b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi

c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC

NT
17 tháng 5 2023 lúc 10:35

a: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>H,M,K thẳng hàng

b: BHCK là hình thoi khi BH=HC

=>AB=AC

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết