Ôn tập toán 8

VN

Cho tam giác ABC có 3 góc đều nhọn ( AB > AC ) . Gọi M , N , P lần lượt là trung điểm của AB , AC , BC vẽ độ cao AH .

a) Chứng minh : MP = NH

b) Giả sử MH vuông góc PN . Chứng minh : MN + PH = AH

 

VH
22 tháng 8 2016 lúc 19:59

a, M là trung điểm của AB

P là trung điểm của BC 

=> MP là đường trung bình của tam giác ABC 

=> MP = \(\frac{1}{2}\) AC (1)

tam giác AHC vuông tại H có N là trung điểm của AC

=> NH = \(\frac{1}{2}\) AC (2)

từ (1) và (2) => MP = NH ( đpcm )

 

 

Bình luận (3)
VH
23 tháng 8 2016 lúc 13:33

b, M là trung điểm của AB, N là trung điểm của AC 

=> MN là đường trung bình của tam giác ABC 

=> MN // BC mà MP = NH => MNHP là hình thang cân

lại có MH vuông góc PN 

=> MNHP là hình vuông

=> MN = HP

Có P là trung điểm của BC mà MN = \(\frac{1}{2}\) BC ( MN là đường trung bình của tam giác ABC )

=> MN = BP

=> BP = PH

mà BP = PC và 4 điểm B, P, H, C thẳng hàng

=> H trùng với C

=> tam giác ABC vuông tại C

Có AN = NC mà NC = MN = MP ( MNCP hay MNHP vuông )

=> AN + NH ( hay NC ) = MN + PH ( hay PC ) = AH ( AC ) ( đpcm )

Bình luận (0)