§2. Tổng và hiệu của hai vectơ

SK

Cho tam giác ABC. Chứng minh rằng nếu \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CA}-\overrightarrow{CB}\right|\) thì tam giác ABC là tam giác vuông tại C ?

BV
12 tháng 5 2017 lúc 11:16

Dựng hình hình hành CADB.
A B C D
Theo quy tắc hình bình hành: \(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vì vậy \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD\);
Mặt khác \(\left|\overrightarrow{CA}-\overrightarrow{CB}\right|=\left|\overrightarrow{CA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BA}\right|=BA\).
Suy ra: \(CD=AB\).
Hình bình hành CADB có hai đường chéo bằng nhau (\(CD=AB\) )nên hình bình hành CADB là hình chữ nhật.

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết
PP
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
DG
Xem chi tiết