Chương II : Tam giác

GM
Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.a/Chứng minh tam giác ADE là tam giác cân,b/Kẻ BH vuông góc với AD(H thuộc AD),kẻ CK vuông góc với Ả(K thuộc AE).Chứng minh BH=CK,c/Gọi O là giao điểm của BH và CK.Tam giác OBC là tam giác gì?vì sao?
NT
20 tháng 2 2021 lúc 19:32

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

Bình luận (0)
GD
20 tháng 2 2021 lúc 19:15

Chúc học tốt

Bình luận (0)
NK
20 tháng 2 2021 lúc 20:23

a) Ta có: ˆABC+ˆABD=1800ABC^+ABD^=1800(hai góc kề bù)

ˆACB+ˆACE=1800ACB^+ACE^=1800(hai góc kề bù)

mà ˆABC=ˆACBABC^=ACB^(Hai góc ở đáy của ΔBAC cân tại A)

nên ˆABD=ˆACEABD^=ACE^

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

ˆABD=ˆACEABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

ˆHDB=ˆKECHDB^=KEC^(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên ˆHBD=ˆKCEHBD^=KCE^(hai góc tương ứng)

mà ˆHBD=ˆOBCHBD^=OBC^(hai góc đối đỉnh)

và ˆKCE=ˆOCBKCE^=OCB^(hai góc đối đỉnh)

nên ˆOBC=ˆOCBOBC^=OCB^

Xét ΔOBC có ˆOBC=ˆOCBOBC^=OCB^(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

 

Bình luận (0)