Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

NN
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy H, trên tia đối của tia CB lấy K, BH=CK. a) Góc ABH=Góc ACK b)AHK cân c) Kẻ BM vuông góc với AH(M thuộc AH), kẻ CN vuông góc với AK( N thuộc AK). Chứng Minh BM=CN. d) MN song song với HK
TT
7 tháng 2 2021 lúc 19:45

a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)

=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

=> \(\widehat{ABH}=\widehat{ACK}\)

b/ Xét t/g ABH và t/g ACK có

AB = AC 

\(\widehat{ABH}=\widehat{ACK}\)

BH = CK

=> t/g ABH = t/g ACK (c.g.c)

=> AH = AK

=> t/g AHK cân tại A 

c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có

BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)

=> t/g BHM = t/g CKN (ch-gn)

=> BM = CNd/ Có

AH = AK 

HM = KN (t.g BHM = t/g CKN)

=> AM =AN

=> t/g AMN cân tại A 

=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)

Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)

=> \(\widehat{AMN}=\widehat{AHK}\)

Mà 2 góc này đồng vị

=> MN// HK

Bình luận (0)
NT
7 tháng 2 2021 lúc 19:50

a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)

b) Xét ΔABH và ΔACK có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABH}=\widehat{ACK}\)(cmt)

BH=CK(gt)

Do đó: ΔABH=ΔACK(c-g-c)

nên AH=AK(hai cạnh tương ứng)

Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có

BH=CK(gt)

\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)

Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)

Suy ra: BM=CN(hai cạnh tương ứng)

d) Ta có: ΔMHB=ΔNKC(cmt)

nên MH=NK(hai cạnh tương ứng)

Ta có: AM+MH=AH(M nằm giữa A và H)

AN+NK=AK(N nằm giữa A và K)

mà AK=AH(cmt)

và MH=NK(cmt)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)

Ta có: ΔAHK cân tại A(cmt)

nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)

mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị

nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TL
Xem chi tiết
DK
Xem chi tiết
XD
Xem chi tiết
XD
Xem chi tiết
BH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết