Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập cuối năm phần hình học

BH

Cho tam giác ABC cân tại A, trên BC lấy M. Vẽ ME, MF vuông góc với AC, AB. Kẻ đường cao CH. Chứng minh ME+ MF không thay đổi khi m di động trên BC

H24
29 tháng 4 2021 lúc 22:07

Kẻ CK vuông góc với đường thằng FM.

Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.

Xét ∆FMB và ∆KMC:

\(\widehat{BFM}=\widehat{CKM}=90^o\)

\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)

=> ∆FMB~∆KMC (g.g)

=> \(\widehat{FBM}=\widehat{KCM}\)

Xét ∆ECM và ∆KCM:

MC: cạnh chung

\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)

\(\widehat{CEM}=\widehat{CKM}=90^o\)

=> ∆ECM=∆KCM (ch.gn)

=> ME=MK (2 cạnh tương ứng)

Ta có: MF+ME=MF+MK=FK

Mà HCKF là hình chữ nhật(cmt) nên FK=CH

=> MF+ME=CH

Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LN
Xem chi tiết
TP
Xem chi tiết
BT
Xem chi tiết
ML
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
NT
Xem chi tiết