Chương II : Tam giác

AB

Cho tam giác ABC cân tại A. M,n lần lượt trung điểm AB, AC và I là giao điểm BN và CM. Chứng minh: tam giác IBC cân.

NT
27 tháng 1 2021 lúc 21:53

Ta có: \(AN=CN=\dfrac{AC}{2}\)(N là trung điểm của AC)

\(AM=BM=\dfrac{AB}{2}\)(M là trung điểm của AB)

mà AC=AB(ΔABC cân tại A)

nên AN=CN=AM=BM

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

nên \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)(tia BN nằm giữa hai tia BA,BC)

\(\widehat{ACM}+\widehat{BCM}=\widehat{ACB}\)(tia CM nằm giữa hai tia CA,CB)

mà \(\widehat{ABN}=\widehat{ACM}\)(cmt)

và \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)

nên \(\widehat{CBN}=\widehat{BCM}\)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

Bình luận (0)