Nguyễn Huy Tú,Akai Haruma,Nguyễn Thanh Hằng,Mysterious Person, giúp em vs em đag cần gấp
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Nguyễn Huy Tú,Akai Haruma,Nguyễn Thanh Hằng,Mysterious Person, giúp em vs em đag cần gấp
Cho Tam giác ABC vuông tại A, có AB=12cm ; AC=16cm. Kẻ đường cao AH (H∈BC).
a) Chứng minh: Tam giác HBA đồng dạng với Tam giác ABC
b)Chứng minh: \(AB^2\)=HB.BC, tính HB
c)Trên cạnh AC lấy điểm D, trên nửa mặt phẳng bờ BC không chứa điểm A xác định điểm E sao cho CDBE là hình bình hành, qua B kẻ đường vuông góc với tia CE tại F. Chứng minh rằng:CD.CA+BD.CF=\(BC^2\)
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC(AB=AC). O là trung điểm cảu BC. Kẻ OD ( D thuộc AB0 và OE ( E thuộc AC) sao cho góc BOD = OEC.
a. Chứng minh: tam gíac OBD đồng dạng tam giác ECO từ đó suy ra OB2 = EC.BD
b. Chứng minh: DOE có số đo ko đổi
c. Chứng minh tam giác EOD đồng dạng tam giác OBD
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABc có AB=6cm; AC=7,5 , BC=9cm . Trên tia đối của tioa AB lấy điểm D sao cho AD=AC . Chứng minh tam giác ABC đồng dạng với tam giác CBD
( Khỏi vẽ hình )
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số AN/AB và AM/AC. Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN. Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db