Cho tam giác ABC có BC = \(\sqrt{6}\) , AC = 2 và AB = \(\sqrt{3}+1\) và . Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Cho tam giác ABC, BC=10. Gọi I là đường tròn tâm I thuộc BC và tiếp xúc vs cạnh AB, AC. Biết AI=3, 2IB=3IC
Tính độ dài các cạnh tam giác ABC
cho tam giác ABC có ác cạnh BC = a , AC =b , AB =c , gọi I là tâm đường tròn nội tiếp tam giác ABC
a) chứng minh rằng : ( b2 -c2 )cos A = a( c.cosC -b.cosB)
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R, H là trực tâm của tam giác. Chứng minh:
\(OH^2=3R^2-2R^2\left(\cos2A+\cos2B+\cos2C\right)\)
Cho tam giác ABC có 3 góc nhọn và \(\widehat{ABC}>\widehat{ACB}\). Đường phân giác trong của góc BAC cắt đoạn BC tại D. Gọi E,F lần lượt là hình chiếu vuông góc của D trên AB và AC. K là giao điểm của CE và BF. Đường thẳng BF cắt đường tròn ngoại tiếp tam giác AEK tại điểm thứ hai là H ( H khác K). Gọi I là giao điểm của hai đường thẳng AK và BC. CM
a) \(IC.EB=IB.FC\)
b) \(DH\perp BF\)
1/ Cho tam giác ABC có AB = 2, BC = 3 và ABC=60
Tính chu vi và diện tích của tam giác ABC
Cho tam giác ABC vuông tại A có AB=a, AC=a\(\sqrt{3}\) và AM là trung tuyến. Tích vô hướng \(\overrightarrow{BA}.\overrightarrow{AM}\)
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)