Ôn tập toán 8

JL

Cho tam giác ABC ,B =C, ke AH vuông góc BC , H thuộc BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD =CE. Chứng minh:

a) AB =AC.

b) tam giác ABD = tam giác ACE.

c) tam giác ACD = tam giác ABE.

d) AH là tia phân giác của góc DAE

SG
16 tháng 12 2016 lúc 13:10

a) t/g AHC vuông tại H có: ACH + CAH = 90o (1)

t/g AHB vuông tại H có: ABH + BAH = 90o (2)

Từ (1) và (2) lại có: ACH = ABH (gt) suy ra CAH = BAH

t/g ACH = t/g ABH ( cạnh góc vuông và góc nhọn kề)

=> AC = AB (2 cạnh tương ứng) (đpcm)

b) t/g ACH = t/g ABH (cmt)

=> ACH = ABH (2 góc tương ứng)

Lại có: ACH + ACE = ABH + ABD = 180o

=> ACE = ABD

t/g ACE = t/g ABD (c.g.c) (đpcm)

c) Có: EC = BD (gt)

=> EC + BC = BD + BC

=> BE = CD

t/g ACD = t/g ABE (c.g.c) (đpcm)

d) t/g ACH = t/g ABH (câu a)

=> CH = BH (2 cạnh tương ứng)

Mà: CE = BD (gt)

Nên CH + CE = BH + BD

=> HE = HD

t/g AHE = t/g AHD (2 cạnh góc vuông)

=> EAH = DAH (2 góc tương ứng)

=> AH là phân giác DAE (đpcm)

Bình luận (2)

Các câu hỏi tương tự
TP
Xem chi tiết
JL
Xem chi tiết
TP
Xem chi tiết
PA
Xem chi tiết
WR
Xem chi tiết
DN
Xem chi tiết
LL
Xem chi tiết
NC
Xem chi tiết
TP
Xem chi tiết