CHo tam giác ABC phân giác AD . TRên nửa mặt phẳng bờ BC không chứa Điểm A vẽ tia Bx sao cho góc BCx = góc BAD . GỌi I là giao điểm của tia Cx với AD kéo dài .
a) Hai tam giác ADC và BDI có đồng dạng không . VÌ sao ?
b) Chứng minh AB.AC=AD.AI
c) CHứng minh AB.AC-DB.DC=AD2
cho tam giác ABC(AB<AC), tia phân giác AD. qua D vẽ tia Dx sao cho góc CDx= góc A (Dx và A cùng phía đối với BC). tia Dx cắt Ac ở E. chứng minh:
a) tam giác ABC đồng dạng tam giác DEC
b)DE=DB
(vẽ hình giúp mình với ạ)
Cho Tam giác ABC vuông tại A, có AB=12cm ; AC=16cm. Kẻ đường cao AH (H∈BC).
a) Chứng minh: Tam giác HBA đồng dạng với Tam giác ABC
b)Chứng minh: \(AB^2\)=HB.BC, tính HB
c)Trên cạnh AC lấy điểm D, trên nửa mặt phẳng bờ BC không chứa điểm A xác định điểm E sao cho CDBE là hình bình hành, qua B kẻ đường vuông góc với tia CE tại F. Chứng minh rằng:CD.CA+BD.CF=\(BC^2\)
Cho tam giác ABc có AB=6cm; AC=7,5 , BC=9cm . Trên tia đối của tioa AB lấy điểm D sao cho AD=AC . Chứng minh tam giác ABC đồng dạng với tam giác CBD
( Khỏi vẽ hình )
Ai giải+vẽ hình cho mik vs
1.Cho Tam giác ABC có AM là trung tuyến,N là điểm nằm trên AM.Gọi D là giao điểm của CN và AB,E là giao điểm của BN và AC.CMR AD/BD=AE/CE
2.Cho tam giác ABC(AB>AC).CÓ D là đường phân giác tring ở ngoài tam giác ABC,vẽ tia Cx sao cho góc BCx=góc BAD.Gọi I là giao điểm cuả Cx và AD.CMR
a,ΔADB đồng dạng ΔCDI
b,AD/AC=AB/AI
c,AD2 = AB.AC-BD.DC
Vẽ hình ra giúp mình nữa nhá !!
Cho tam giác ABC có AB<AC; phân giác AD. Qua D vẽ tia Dx sao cho góc CDx = A; Dx và A cùng phía với BC. Tia Dx cắt AC ở E. Chứng minh:
a) Tam giác ABC đồng dạng tam giác DEC
b) DE=DB
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1