Cho số thực x tìm GTNN của biểu thức
\(A=\sqrt{x-2012-2\sqrt{x-2013}}+\sqrt{x+12-90\sqrt{x-2013}}\)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) . Tính P = x+y
Bài 1. Cho biểu thức Q = ( \(\dfrac{\sqrt{x-2}}{3+\sqrt{x-2}}\) + \(\dfrac{x+7}{11-x}\) ) : (\(\dfrac{3\sqrt{x-2}+2}{x-\sqrt{x-2}-2}\) - \(\dfrac{1}{\sqrt{x-2}}\))
a) Rút gọn Q
b) Tìm giá trị của Q khi x = 3(\(\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}\) - \(\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\) )
Bài 2: Cho các số thực dương a,b thỏa mãn a2014 + b2014 = a2013 + b2013 = a2012 + b2012
Chứng minh rằng A = (a+b) : \(\sqrt{\dfrac{a^3}{b^2}+\dfrac{8b^2}{a^3}}\) là một số hữu tỉ
Bài 3: Giải PT:
a) x2 - 20x + 24 + 8\(\sqrt{3\left(x-1\right)}\) = 0
b) (4x+2) \(\sqrt{x+8}\) = 3x2 + 7x + 8
c) x2 + 2x = 4 - 4\(\sqrt{x+3}\)
Tìm GTNN, GTLN của bt
A=\(\sqrt{x-2013}+\sqrt{2014-x}\)
1) Tính A = \(\dfrac{x^{98}+x^{97}+....+x+1}{x^{32}+x^{31}+.,..+x+1}\) tại x = 2
2) Rút gọn: B = \(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{2}+\sqrt{6}}+....+\dfrac{1}{\sqrt{2009}+\sqrt{2013}}+\dfrac{1}{\sqrt{2010}+\sqrt{2014}}\)
3) Cho x,y thỏa \(x^{671}+y^{671}=0,67\) ; \(x^{1342}+y^{1342}=1,34\) Tính A=\(x^{2013}+y^{2013}\)
tìm gtnn của P= \(x-5\sqrt{x-2}+2013\)
1.CM đẳng thức: \(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}+\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
2. Giai hệ phương trình:
\(\left\{{}\begin{matrix}x^2\left(2013y-2012\right)=1\\x\left(y^2+2012\right)=2013\end{matrix}\right.\)
1.
a/ cho 6 số dương a,b,c,x,y,z thỏa mãn : ax+by+cz=xyz. cmr: \(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
b/ cm: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{b+c}}>2\) với a,b,c >0
2.
a/ cho \(\left(x+\sqrt{x^2+2013}\right).\left(y+\sqrt{y^2+2013}\right)=2013\)
b/ cho a,b là các số tự nhiên .cmr : \(5a^2+15ab-b^2⋮49\Leftrightarrow3a+b⋮7\)