Ôn tập chương III

NS

Cho số A = \(2017^{2018}+2018^{2017}\). Tìm số dư khi chia A cho 10 ?

SK
12 tháng 4 2018 lúc 22:14

Ta có:
20172 = 9 ( theo mod 10 ) ; 20178=(20172)4=94=1 ( theo mod 10 )
201710 = (20172)5 = 95=9 ( theo mod 10 )
2017100=( 201710)10=910=1 ( theo mod 10 )
20171000=( 2017100)10=110=1 ( theo mod 10 )
20172000=( 20171000)2=12= 1( theo mod 10 )
20172018=20172000.201710.20178=1.9.1=9( theo mod 10 )

2018=8 ( theo mod 10 ) ;20182=4 ( theo mod 10 )
20187=87=2 ( theo mod 10 )
201810=(20182)5=45=4 ( theo mod 10 )
2018100=(201810)10=410=6 ( theo mod 10 )
20181000= (2018100)10=610=6 ( theo mod 10 )
20182000=(20181000)2=62=6( theo mod 10 )
20182017=20182000.201810.20187=6.4.2=8

⇒ A = 20172018+20182017=9+8=7 ( theo mod 10 )

⇒ Số dư khi chia A = 20172018+20182017 cho 10 là 7

Bình luận (0)
LL
16 tháng 6 2019 lúc 13:54

Ta có:
20172 = 9 ( theo mod 10 ) ; 20178=(20172)4=94=1 ( theo mod 10 )
201710 = (20172)5 = 95=9 ( theo mod 10 )
2017100=( 201710)10=910=1 ( theo mod 10 )
20171000=( 2017100)10=110=1 ( theo mod 10 )
20172000=( 20171000)2=12= 1( theo mod 10 )
20172018=20172000.201710.20178=1.9.1=9( theo mod 10 )

2018=8 ( theo mod 10 ) ;20182=4 ( theo mod 10 )
20187=87=2 ( theo mod 10 )
201810=(20182)5=45=4 ( theo mod 10 )
2018100=(201810)10=410=6 ( theo mod 10 )
20181000= (2018100)10=610=6 ( theo mod 10 )
20182000=(20181000)2=62=6( theo mod 10 )
20182017=20182000.201810.20187=6.4.2=8

⇒ A = 20172018+20182017=9+8=7 ( theo mod 10 )

⇒ Số dư khi chia A = 20172018+20182017 cho 10 là 7

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
NS
Xem chi tiết
TM
Xem chi tiết
YN
Xem chi tiết
TH
Xem chi tiết
TG
Xem chi tiết
YA
Xem chi tiết
NS
Xem chi tiết
LN
Xem chi tiết