§3. Công thức lượng giác

SK

Cho \(\sin2a=-\dfrac{5}{9}\) và \(\dfrac{\pi}{2}< a< \pi\)

Tính \(\sin a\) và \(\cos a\)

H24
30 tháng 3 2017 lúc 9:58

\(\dfrac{\pi}{2}< a< \pi\) => sina > 0, cosa < 0

cos2a = \(\pm\sqrt{1-sin^22a}=\pm\sqrt{1-\left(\dfrac{5}{9}\right)^2}=\pm\dfrac{2\sqrt{14}}{9}\)

Nếu cos2a thì \(\dfrac{2\sqrt{14}}{9}\) thì

sina \(=\sqrt{\dfrac{1-cos2a}{2}}=\sqrt{\dfrac{1-\dfrac{2\sqrt{14}}{9}}{2}}=\dfrac{\sqrt{9-2\sqrt{14}}}{3\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}}{3\sqrt{2}}=\dfrac{\sqrt{7}-\sqrt{2}}{3\sqrt{2}}=\dfrac{\sqrt{14}-2}{6}\)

Nếu cos2a \(=-\dfrac{2\sqrt{14}}{9}\)

thì sina \(=\sqrt{\dfrac{1cos2a}{2}}=\sqrt{\dfrac{1+\dfrac{2\sqrt{14}}{9}}{2}}=\dfrac{2\sqrt{14}}{6}\)

cosa \(=-\sqrt{\dfrac{1+cos2a}{2}}=-\sqrt{\dfrac{9-2\sqrt{14}}{18}}=\dfrac{2-\sqrt{14}}{6}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TV
Xem chi tiết
TY
Xem chi tiết
DF
Xem chi tiết
PD
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết