Lời giải:
a) Ta có:
\(Q=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}+2)(\sqrt{a}-2)}{(\sqrt{a}-2)(\sqrt{a}-1)}\)
\(=\frac{1}{\sqrt{a}(\sqrt{a}-1)}: \frac{(a-1)-(a-4)}{(\sqrt{a}-2)(\sqrt{a}-1)}\)
\(=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}\)
\(=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để \(Q\) dương thì \(\frac{\sqrt{a}-2}{3\sqrt{a}}>0\). Mà \(3\sqrt{a}>0\) với mọi $a$ thuộc ĐKXĐ nên $Q$ dương khi \(\sqrt{a}-2>0\Leftrightarrow \sqrt{a}>2\Leftrightarrow a>4\)
Kết hợp với đkxđ suy ra để $Q$ dương thì $a>4$
a)\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a-1}\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a\left(\sqrt{a}-1\right)}}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{\left(a-1\right)\left(a-4\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{a-1-a+4}\)
\(=\dfrac{1}{\sqrt{a}}\cdot\dfrac{\sqrt{a}-2}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\) ĐKXĐ: \(x>0\) \(a\ne4\) \(a\ne1\)
b)\(Q>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\) (Kết hợp ĐKXĐ \(a>0\))
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
\(\Leftrightarrow a>4\) (thỏa mãn ĐKXĐ)
Vậy \(a>4\) thì \(Q>0\)
___♫ Chúc bạn học tốt ♫___